YAPAY ZEKA MÜHENDİSLİĞİ
Lisans TYYÇ: 6. Düzey QF-EHEA: 1. Düzey EQF-LLL: 6. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
CMP4501 Yapay Zeka ve Uzman Sistemlere Giriş Bahar
3 0 3 6
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: English
Dersin Türü: Non-Departmental Elective
Dersin Seviyesi: LİSANS
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Dr. Öğr. Üyesi BARIŞ ÖZCAN
Opsiyonel Program Bileşenleri: Yok
Dersin Amacı: Bu ders yapay zekanın temel konularına giriş niteliğindedir. Problem çözümü için temel arama teknikleri, bilgi temsili ve mantıksal sistemlerin temelleri, temel öğrenme algoritmaları ve uzman sistemlerin temelleri tanıtılacaktır.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
I- Bir problemin durum uzayı tanımını yapabilmek.
II - Bir problem için kaba-kuvvet veya sezgisel algoritmaları seçebilmek ve kullanabilmek.
III- Alpha-beta budaması ile minimax arama algoritmasını gerçekleştirebilmek.
IV. En temel bilgi temsil sistemlerini karşılaştırıp değerlendirebilmek.
V. Kuram isplatlamak için resolution tekniğinin çalışmasını açıklayabilmek.
VI. Gözetimli ve gözetimsiz öğrenme teknikleri arasında farkı açıklayabilmek.
VIII. Overfitting, underfitting, bias, ve variance gibi kavramları açıklayabilmek.
IX. Uzman sistemlerin temellerini tanımlayabilmek ve uzman sistemleri değerlendirebilmek.

Dersin İçeriği

Yapay zekaya giriş, durum uzayları ve arama, sezgisel fonksiyonlar ve arama, alpha-beta budama, önermeler ve birinci dereceden yüklemler mantığı, önermeli ve birinci dereceden çıkarsama, birleştirme ve çözülme, doğrusal regresyon, lojistik regresyon, sinirsel ağlar ve geri yayılım algoritması, Bayes kuralı ve naif Bayes algoritması, kümeleme ve k-means algoritması, uzman sistemlerin temelleri, uzman sistem yazılımları.
Dersin Öğretim yöntemleri anlatım, bireysel çalışma, problem çözme ve uygulama şeklindedir









Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Yapay zekaya giriş
2) Durum uzayları ve arama
3) Koşul Tatmin Problemleri
4) Başka etmenler ile arama.
5) Markov karar süreçleri I
6) Markov karar süreçleri II
7) Ara sınav
8) Pekiştirmeli Öğrenme
9) Olasılık, Bayes Kuralı ve Bayes ağları
11) Bayes kuralı ve naif Bayes algoritması
12) Sinirsel ağlar ve geri yayılım algoritması I
13) Sinirsel ağlar ve geri yayılım algoritması II
14) Büyük Dil Modelleri I
15) Büyük Dil Modelleri II

Kaynaklar

Ders Notları / Kitaplar: Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, (3rd edition), 2009.

Giarratano, J.C., Riley, G.D., Expert Systems: Principles and Programming, (4th edition), 2004.
Diğer Kaynaklar: Yok - None

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Küçük Sınavlar 5 % 20
Projeler 1 % 25
Ara Sınavlar 1 % 20
Final 1 % 35
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 40
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 60
Toplam % 100

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı İş Yükü
Ders Saati 14 42
Proje 7 35
Ödevler 10 20
Küçük Sınavlar 6 16
Ara Sınavlar 5 15
Final 5 20
Toplam İş Yükü 148

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Matematik, Fen Bilimleri ve Yapay Zeka Mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alandaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilir.
2) Karmaşık Yapay Zeka sistemleri, platformları, süreçleri, cihazları veya ürünleri gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlar ve bu amaçla modern tasarım yöntemlerini uygular.
3) Karmaşık Yapay Zeka Mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçer ve uygular.
4) Yapay Zeka Mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirir, seçer ve kullanır; bilişim teknolojilerini etkin bir şekilde kullanır.
5) Karmaşık Yapay Zeka Mühendisliği problemlerinin veya araştırma konularının incelenmesi için sayısal veya fiziksel deney tasarlar ve yapar, veri toplar, sonuçları analiz eder ve yorumlar.
6) İngilizce ve Türkçe (eğer Türk vatandaşı ise) sözlü ve yazılı etkin iletişim kurma becerisi; alanındaki yenilikleri takip edebilecek düzeyde İngilizce dil bilgisi (Avrupa Dil Portföyü B1 genel düzeyi) kazanır; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi kazanır.
7) Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerilerine sahip olur.
8) Etik ilkelerine uygun davranır, mesleki ve etik sorumluluk bilinci sahibidir; Yapay Zeka Mühendisliği uygulamalarında kullanılan standartlar hakkında bilgilidir. 3
9) Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi edinir.
10) Yapay Zeka Mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi sahibidir; Yapay Zeka Mühendisliği çözümlerinin hukuksal sonuçlarının farkındadır. 4
11) Yapay Zeka Mühendisliğini ilgilendiren problemlerde bireysel ve ilgili çok disiplinli takımlarda etkin biçimde çalışır.