ENERGY SYSTEMS ENGINEERING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
CMP4336 | Introduction to Data Mining | Fall | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR |
Recommended Optional Program Components: | None |
Course Objectives: | In this course, data mining algorithms and computational paradigms that are used to extract useful knowledge, extract patterns and regularities in databases, and perform prediction and forecasting will be discussed. Supervised and unsupervised learning approaches will be covered with a focus on pattern discovery and cluster analysis. |
The students who have succeeded in this course; 1. Be able to understand Data Gathering and Pre-processing 2. Become familiar with Frequent Item Set Detection 3. Be able to understand Association Rule Mining 4. Be able to understand Classifiers, and their benefits 5. Be able to use Clustering 6. Be able to understand Clustering Evaluation |
1.Introduction to Basic Concepts 2.Data Exploration 3.Classification 4.Clustering 5.Dimensionality Reduction 6.Frequent Item Set Mining 7.Association Rule Mining |
Week | Subject | Related Preparation |
1) | Introduction to Basic Concepts | None |
2) | Data Exploration: Summary Statistics, Visualization, OLAP and Multi-dimensional Data Analysis | None |
3) | Data Pre-Processing, Transformation, Normalization, Standardization | None |
4) | Classification and Regression: Model Selection and Generalization, Decision Trees, Performance Evaluation | None |
5) | Classification: Bayesian Decision Theory, Parametric Classification, Naive Bayes Classifier, Instance-Based Classifiers | |
6) | Classification | None |
6) | Classification and Regression: Artificial Neural Networks, Support Vector Machines | |
7) | Midterm I | Review of all topics covered so far |
8) | Clustering: Partitioning and Hierarchical Algorithms | None |
9) | Clustering: Density-Based Algorithms | |
10) | Cluster Evaluation, Comparing Clusterings | None |
11) | Midterm II | none |
12) | Dimensionality Reduction | none |
13) | Frequent Item Set Mining | none |
14) | Association Rule Mining | none |
Course Notes / Textbooks: | Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach and Vipin Kumar |
References: | Data Mining: Concepts and Techniques, by Jiawei Han, Micheline Kamber and Jian Pei |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 2 | % 20 |
Project | 1 | % 20 |
Midterms | 2 | % 20 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
Total | % 100 |
Activities | Number of Activities | Workload |
Course Hours | 14 | 42 |
Study Hours Out of Class | 16 | 32 |
Project | 5 | 15 |
Homework Assignments | 6 | 12 |
Midterms | 8 | 28 |
Final | 6 | 26 |
Total Workload | 155 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. | |
2) | Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose. | |
3) | Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. | |
4) | Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively. | |
5) | Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering. | |
6) | Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems | |
7) | Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. | |
8) | Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. | |
9) | Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications. | |
10) | Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions. |