LOJİSTİK YÖNETİMİ | |||||
Lisans | TYYÇ: 6. Düzey | QF-EHEA: 1. Düzey | EQF-LLL: 6. Düzey |
Ders Kodu | Ders Adı | Yarıyıl | Teorik | Pratik | Kredi | AKTS |
CMP4336 | Veri Madenciliğine Giriş | Güz | 3 | 0 | 3 | 6 |
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir. |
Öğretim Dili: | English |
Dersin Türü: | Non-Departmental Elective |
Dersin Seviyesi: | LİSANS |
Dersin Veriliş Şekli: | Yüz yüze |
Dersin Koordinatörü: | Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR |
Opsiyonel Program Bileşenleri: | yok |
Dersin Amacı: | Bu derste, yararlı bilgileri elde etmek, veritabanındaki örüntüleri ve düzenlilikleri keşfetmek, tahmin ve kestirim yapmak için kullanılan veri madenciliği ve hesaplama paradigmaları tartışılacaktır. Gözetimli ve gözetimsiz öğrenme yaklaşımları, model bulma ve küme analizi üzerine odaklanılarak ele alınacaktır. |
Bu dersi başarıyla tamamlayabilen öğrenciler; 1. Veri Toplama ve Ön-işleme konularını kavrayabilme 2. Sıklıkla Satılan Ürün Seti algoritmasına aşina olmak 3. Birliktelik Kuralını kavrayabilme 4. Sınıflayıcılar ve faydalarını kavrayabilme 5. Kümelemeyi kullanabilecek hale gelme 6. Kümeleme Değerlendirmesini kavrayabilme |
1.Temel Kavramlara Giriş 2.Veri Keşfi 3.Sınıflandırma 4.Kümeleme 5.Boyut Küçültme 6.Sıklıkla Satılan Ürün Kümeleri 7.Birliktelik Kural Analizi |
Hafta | Konu | Ön Hazırlık |
1) | Temel Kavramlara Giriş | Yok |
2) | Veri Keşfi: Özet İstatistik, Görselleştirme, OLAP ve Çok Boyutlu Veri Analizi | Yok |
3) | Veri Önişleme, Dönüşüm, Normalleştirme, Standardizasyon | Yok |
4) | Sınıflandırma ve Regresyon: Model Seçimi ve Genelleştirilmesi, Karar Ağaçları, Performans Değerlendirmesi | Yok |
5) | Sınıflandırma: Bayesian Karar Teorisi, Parametrik Sınıflandırma, Naive Bayes Sınıflandırıcısı, Örnek Temelli Sınıflandırıcılar | |
6) | Sınıflandırma | Yok |
6) | Sınıflandırma ve Regresyon: Yapay Sinir Ağları, Destek Vektör Makineleri | |
7) | Ara Sınav I | Tüm konuların tekrarı |
8) | Kümeleme: Bölümleme ve Hiyerarşik Algoritmalar | Yok |
9) | Kümeleme: Yoğunluk Tabanlı Algoritmalar | |
10) | Küme Değerlendirmesi, Kümele Sonuçlarının Karşılaştırılması | Yok |
11) | Ara sınav II | yok |
12) | Boyut Küçültme | yok |
13) | Sık Öge Küme Madenciliği | yok |
14) | Birliktelik Kural Çıkarımı | yok |
Ders Notları / Kitaplar: | Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach and Vipin Kumar |
Diğer Kaynaklar: | Data Mining: Concepts and Techniques, by Jiawei Han, Micheline Kamber and Jian Pei |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Ödev | 2 | % 20 |
Projeler | 1 | % 20 |
Ara Sınavlar | 2 | % 20 |
Final | 1 | % 40 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 40 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 60 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | İş Yükü |
Ders Saati | 14 | 42 |
Sınıf Dışı Ders Çalışması | 16 | 32 |
Proje | 5 | 15 |
Ödevler | 6 | 12 |
Ara Sınavlar | 8 | 28 |
Final | 6 | 26 |
Toplam İş Yükü | 155 |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı | |
1) | Sorun tespit etmek ve doğru soruları sorabilmek | |
2) | Problem çözme becerisine sahip olmak ve bunun için gerekli analitik yaklaşımları geliştirebilmek | |
3) | İş süreçlerini ayıt edebilmek ve süreç tasarlama, planlama ve uygulama bilgisine sahip olmak. | |
4) | Lojistik yönetimi alanında gerekli bilgi ve iletişim teknolojileri araçlarını kullanmak. | |
5) | Lojistik kavramının bileşenlerini ayırt edebilme, ve uyum halinde bir bütün oluşturmasının önemini anlamak. | |
6) | İş hayatında üretkenliği artırmaya yönelik gereksinimlerin farkında olmnak | |
7) | Karmaşık durumlar karşısında yenilikçi ve yaratıcı düşünce yapısına sahip olmak | 4 |
8) | Hem yerel hem uluslararası boyutta düşünce ve davranış geliştirebilmek | |
9) | Küreselleşme ve Lojistik Yönetimi arasındaki çift yönlü etkileşimi anlamak ve verimli bir yönetim için kullanmak. | |
10) | En az bir yabancı dili akademik ve günlük iletişimde kullanabilmek | 2 |
11) | İş etiğinin önemini kavramak, iş etiğini akademik dünyanın ve iş hayatının temel ögesi olarak uygulamak |