Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP3005 Analysis of Algorithms Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR
Course Lecturer(s): Dr. Öğr. Üyesi TEVFİK AYTEKİN
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to introduce the fundamental mathematical tools needed to analyze algorithms, basic algorithm design techniques, advanced data structures, and important algorithms from different problem domains.

Learning Outcomes

The students who have succeeded in this course;
I. Become familiar with some major advanced data structures and algorithms.
II. Become familiar with mathematical tools used in analyzing algorithms.
III. Be able to analyze the asymptotic running time of an (iterative/recursive) algorithm.
IV. Be able to make best/worst/average case analysis of algorithms.
V. Become familiar with important algorithm design paradigms.
VI. Be able to decide which data structure/algorithm among a set of possible choices is best for a particular application.
VII. Be able to recognize and distinguish efficient and inefficient algorithms.
VIII. Be able to design efficient algorithms for new problems using the techniques learned and apply/report these solutions in an intra-discipline project group.

Course Content

Introduction, asymptotic notation, empirical analysis of algorithms, designing algorithms, amortized analysis, brute force algorithms, divide and conquer algorithms, transform and conquer algorithms, space and time trade-offs, dynamic programming, greedy algorithms, advanced data structures, B-trees, Insertion and Deletion from B-trees, graphs and graph algorithms, P, NP, and NP-complete problems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction, asymptotic notation.
2) Empirical analysis of algorithms, analysis of algorithms, amortized analysis
3) Recurrences, substitution method, recursion-tree method, master method.
4) Brute Force Algorithms
5) Divide and Conquer Algorithms
6) Merge sort, quicksort, randomized quicksort, binary search
7) Transform and Conquer Algorithms: Solving systems of linear equations with Gaussian ination elimination, Balanced Search Trees, Heaps and Heapsort, Horner's Rule and Binary Exponentiation
8) Space and Time Trade-offs: Input Enhancement (Counting based sorting, string matching), Prestructuring (Hashing, Hash functions, open addressing).
9) Midterm
10) Dynamic Programming: Coin-row problem, Knapsack problem, Longest common subsequence.
11) Dynamic Programming: Knapsack problem, Longest common subsequence.
12) Greedy Algorithms: Activity selection, Huffman codes, Prim’s algorithm, Kruskal’s Algorithm
13) Single-source shortest paths: The Bellman-Ford algorithm, Dijkstra's algorithm.
14) P, NP, and NP-complete problems


Course Notes / Textbooks: Anany Levitin, The Design and Analysis of Algorithms, Pearson International Third Edition.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., Introduction to Algorithms (3rd Edition), MIT Press, 2009.

Sanjoy Dasgupta , Christos Papadimitriou, Umesh Vazirani, Algorithms, McGraw-Hill Education.
References: Yok - None

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 7 21
Quizzes 6 12
Midterms 5 28
Final 5 35
Total Workload 138

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
Program Outcomes Level of Contribution
1) To be able to critically interpret and discuss the theories, the concepts, the traditions, and the developments in the history of thought which are fundamental for the field of new media, journalism and communication.
2) To be able to attain written, oral and visual knowledge about technical equipment and software used in the process of news and the content production in new media, and to be able to acquire effective abilities to use them on a professional level.
3) To be able to get information about the institutional agents and generally about the sector operating in the field of new media, journalism and communication, and to be able to critically evaluate them.
4) To be able to comprehend the reactions of the readers, the listeners, the audiences and the users to the changing roles of media environments, and to be able to provide and circulate an original contents for them and to predict future trends.
5) To be able to apprehend the basic theories, the concepts and the thoughts related to neighbouring fields of new media and journalism in a critical manner.
6) To be able to grasp global and technological changes in the field of communication, and the relations due to with their effects on the local agents.
7) To be able to develop skills on gathering necessary data by using scientific methods, analyzing and circulating them in order to produce content.
8) To be able to develop acquired knowledge, skills and competence upon social aims by being legally and ethically responsible for a lifetime, and to be able to use them in order to provide social benefit.
9) To be able to operate collaborative projects with national/international colleagues in the field of new media, journalism and communication.
10) To be able to improve skills on creating works in various formats and which are qualified to be published on the prestigious national and international channels.