MCH4205 Introduction to Finite Element MethodsBahçeşehir ÜniversitesiAkademik Programlar YAZILIM MÜHENDİSLİĞİÖğrenciler için Genel BilgiDiploma EkiErasmus BeyanıUlusal YeterliliklerBologna Komisyonu
YAZILIM MÜHENDİSLİĞİ
Lisans TYYÇ: 6. Düzey QF-EHEA: 1. Düzey EQF-LLL: 6. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
MCH4205 Sonlu Elemanlar Yöntemine Giriş Güz 3 0 3 6
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: İngilizce
Dersin Türü: Non-Departmental Elective
Dersin Seviyesi: LİSANS
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Doç. Dr. ARMAĞAN FATİH KARAMANLI
Opsiyonel Program Bileşenleri: Yok
Dersin Amacı: Bu dersin amacı, sonlu elemanlar yönteminin teorisi yanı sıra pratik deneyimini öğrencilere kazandırmaktır. Matris cebiri, kafes ve kiriş eleman formülasyonları, Bir, iki ve üç boyutlu eleman formülasyon ve analiz işlemleri dersin teorik içeriği kapsamındadır. HyperMesh, Radioss Linear ve Nastran yazılım paketleri kullanılacaktır.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
I. Bilgisayar Destekli Mühendislik ve Sonlu Elemanlar Yöntemini tanımla
II.Ticari yazılım paketleri ve uygulama alanlarını açıkla
III. Sonlu Elemanlar Yönteminin felsefesi ve alternatiflerini açıkla
IV. Hyperworks yazılımının temel geometrik işlevlerini (çözüm ağı, geometri temizleme, eleman kalite kontrolu) açıkla
V. Farklı disiplinlerden problemlerin çözümünde doğrusal bir boyutlu eleman formülasyonu uygula
VI. Bir boyutlu elemanlar ile tek ve iki boyutlu problemleri analiz et
VII. Sonlu Elemanlar Yöntemi ile düzlemsel ve uzaysal kafes sistemlerini analiz et
VIII. HyperMesh yazılımı kullanarak ve Radioss Linear ve Nastran çözücüler ile statik yük altında iki ve üç boyutlu sistemleri analiz et
IX. Bir, iki ve üç boyutlu elastosatik, yerel ve küresel şekil fonksiyonlarını açıkla
X. İki ve üç boyutlu sitemlerin frekans bölgesi analizlerini yap

Dersin İçeriği

Bilgisayar Destekli Mühendislik Yöntemleri; Matris cebiri hatırlatma, HyperMesh Giriş; FEM Felsefesi, FEM’in yedi adımı; HyperMesh Temel Fonksiyonları; Bir boyutlu yay analojisi ve montaj süreci, HyperMesh temel geometrik fonksiyonları; Doğrudan ve yok etme metodları ile sınır şartlarının uygulanması, Bir boyutlu elastosatik ve Isı Transferi Problemleri; Farkl çözücüler için bir ve iki bouyutta eleman tipleri; Bir boyutlu problemlerin analizi; Üç boyutlu çözüm ağı yaratılması, Geometri temizleme ve model kontrolü, Eleman Kalitesi, Serbest kenar, Düzlemsel ve Uzay Kafeslerde çözüm ağı düzenleme, Malzeme; Özellik ve bileşenler, Kiriş elemanlar, Midsurface yaratımı, 2 boyutlu statik analiz, Radioss Linear Çözücü için HyperMesh içinde önişleme ve HyperView içinde sonişleme süreci; Bir boyutlu elastostatics, Nastran ile 3 boyutlu statik analiz, Bir boyutlu lineer ve quadratik elemanlar için yerel ve global şekil fonksiyonu yapımı, Montajlar için modelleme teknikleri, Nokta kaynakları, kaynaklar, lehimleme, Civata analizleri, NVH’ye giriş, Radioss Linear ve Nastran ile modal analiz; üç boyutlu elastosatiğe giriş, Radioss Linear ve Nastran ile frekans yanıt analizi

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Bilgisayar Destekli Mühendislik Yöntemleri
2) Matris cebiri hatırlatma, HyperMesh Giriş
3) FEM Felsefesi, FEM’in yedi adımı
4) Bir boyutlu yay analojisi ve montaj süreci, HyperMesh temel geometrik fonksiyonları
5) Doğrudan ve yok etme metodları ile sınır şartlarının uygulanması, Bir boyutlu elastosatik ve Isı Transferi Problemleri
6) Farkl çözücüler için bir ve iki bouyutta eleman tipleri; Bir boyutlu problemlerin analizi
7) Üç boyutlu çözüm ağı yaratılması, Geometri temizleme ve model kontrolü, Eleman Kalitesi, Serbest kenar, Düzlemsel ve Uzay Kafeslerde çözüm ağı düzenleme, Malzeme
8) Özellik ve bileşenler, Kiriş elemanlar, Midsurface yaratımı, 2 boyutlu statik analiz, Radioss Linear Çözücü için HyperMesh içinde önişleme ve HyperView içinde sonişleme süreci
9) Bir boyutlu elastostatics, Nastran ile 3 boyutlu statik analiz, Bir boyutlu lineer ve quadratik elemanlar için yerel ve global şekil fonksiyonu yapımı, Montajlar için modelleme teknikleri
10) Bir boyutlu elastostatics, Nastran ile 3 boyutlu statik analiz, Bir boyutlu lineer ve quadratik elemanlar için yerel ve global şekil fonksiyonu yapımı, Montajlar için modelleme teknikleri
11) Nokta kaynakları, kaynaklar, lehimleme, Civata analizleri
12) NVH’ye giriş, Radioss Linear ve Nastran ile modal analiz
13) üç boyutlu elastosatiğe giriş, Radioss Linear ve Nastran ile frekans yanıt analizi
14) üç boyutlu elastosatiğe giriş, Radioss Linear ve Nastran ile frekans yanıt analizi

Kaynaklar

Ders Notları / Kitaplar: Lecture Notes
Diğer Kaynaklar: Saeed Moaveni, “Finite Element Analysis, Theory and Application with Ansys”, Pearson International Edition, 3rd Ed., ISBN-10: 0-13-241651-4, ISBN 13: 978-0-13-241651-1.

Robert D. Cook, David S. Malkus, Micheal E. Plesha, Robert J. Witt, “Concepts and Applications of Finite Element Analysis”, John Wiley & Sons, Inc., 4th Ed., ISBN 978-0-471-35605-9.

Klaus-Jurgen Bathe, “Finite Element Procedures”, Prentice Hall, ISBN 0-13-301458-4.

Zhangxin Chen, “Finite Element Methods and Their Applications”, Springer, ISBN 3-540-24078-0.

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Devam 14 % 0
Ödev 5 % 10
Projeler 1 % 50
Toplam % 60
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 10
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 50
Toplam % 60

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı Süre (Saat) İş Yükü
Ders Saati 14 2 28
Laboratuvar 14 2 28
Sınıf Dışı Ders Çalışması 14 4 56
Proje 1 10 10
Ödevler 5 4 20
Toplam İş Yükü 142

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Karmaşık mühendislik problemlerine yönelik yazılım proje, süreç ve ürünlerine ait fonksiyonel ve fonksiyonel olmayan özellikleri tanımlayabilmek.
2) Karmaşık mühendislik problemlerinde yazılım mimarisi, bileşenleri, ara yüzleri ve sisteme ait diğer alt bileşenleri tasarlayabilmek.
3) Kodlama, doğrulama, sınama ve hata ayıklama konularını da içerecek şekilde karmaşık yazılım sistemleri geliştirebilmek.
4) Karmaşık mühendislik problemlerinde yazılımı, programın davranışlarını beklenen sonuçlara göre sınayarak doğrulayabilmek.
5) Karmaşık yazılım sistemlerinin çalışması sırasında, çalışma ortamının değişmesi, yeni kullanıcı istekleri ve yazılım hatalarının ortaya çıkması ile meydana gelen bakım faaliyetlerine yönelik işlemleri yapabilmek.
6) Karmaşık yazılım sistemlerinde yapılan değişiklikleri izleyebilmek ve kontrol edebilmek, entegrasyonunu sağlayabilmek, yeni sürümlerini sistematik olarak planlayabilmek ve riskleri yönetebilmek.
7) Disiplin içi ve disiplinler arası takımlarda görev alarak karmaşık yazılım sistemleri yaşam süreçlerini tanımlayabilmek, değerlendirebilmek, ölçebilmek, yönetebilmek ve uygulayabilmek.
8) Karmaşık mühendislik problemlerinde gerçekçi kısıtlar ve koşullar altında yazılım gereksinimlerini toplama, yazılımı tasarlama, geliştirme, sınama, bakımını yapma konularındaki çeşitli araçları ve yöntemleri kullanabilmek.
9) Temel kalite metrikler tanımlayabilmek, yazılım yaşam döngüsü süreçlerini uygulayabilmek, yazılım kalitesini ölçebilmek, kalite model karakteristiklerini tanımlayabilmek, standartları uygulayabilmek ve bunları karmaşık yazılım sistemlerini analiz etmekte, tasarlamakta, geliştirmekte, doğrulamakta ve sınamakta kullanabilmek.
10) Yazılım mühendisliği ile ortak sınırlara sahip olan matematik, fen bilimleri, bilgisayar mühendisliği, endüstri mühendisliği, sistem mühendisliği, ekonomi, yönetim ve sürdürülebilir kalkınma gibi diğer disiplinler hakkında teknik bilgi kazanabilmek ve bunlar aracılığıyla yenilikçi fikirleri karmaşık mühendislik problemlerinde ve girişimcilik faaliyetlerinde kullanabilmek.
11) Yazılım mühendisliği kültürü ve etik anlayışını kavrayabilmek ve bunları yazılım mühendisliğinde uygulayabilecek temel bilgilere sahip olmak, meslek hayatı boyunca gerekli teknik becerileri öğrenip başarıyla uygulayabilmek.
12) Yabancı dil ve Türkçe kullanarak etkin rapor yazabilmek ve yazılı raporları anlayabilmek, tasarım ve üretim raporları hazırlayabilmek, etkin sunum yapabilmek, açık ve anlaşılır talimat verebilmek ve alabilmek.
13) Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları ile mühendislik çözümlerinin hukuksal sonuçları hakkında bilgi sahibi olmak.