CHILD DEVELOPMENT (TURKISH)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MATH3012 Numerical Analysis Fall 2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator :
Recommended Optional Program Components: None
Course Objectives: Numerical Analysis is concerned with the mathematical derivation, description and analysis of obtaining numerical solutions of mathematical problems. We have several objectives for the students. Students should obtain an intuitive and working understanding of some numerical methods for the basic problems of numerical analysis. They should gain some appreciation of the concept of error and of the need to analyze and predict it. And also they should develop some experience in the implementation of numerical methods by using a computer.

Learning Outcomes

The students who have succeeded in this course;

The students who succeeded in this course;
o will be able to define Errors, Big O Notation, Stability and Condition Number, Taylor’s Theorem.
o will be able to solve Nonlinear Equations.
o will be able to solve Linear Systems.
o will be able to use Iterative Methods for Linear Systems.
o will be able to calculate Eigenvalues and Eigenvectors.
o will be able to solve System of Nonlinear Equations.
o will be able to calculate Interpolating and Polynomial Approximation.

Course Content

In this course the solution of linear and nonlinear systems will be discussed numerically. Also iterative methods for linear systems will be taught.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Errors, Big O Notation, Stability and Condition Number, Taylor’s Theorem.
2) The Solution of Nonlinear Equations in the form of f(x)=0: Bisection Method, Fixed Point Iteration.
3) Newton-Rapson Method, Secant Method.
4) The Solution of Linear System : Solving Triangular System, Gauss Elimination and Pivoting.
5) LU Factorization, Tridiagonal System, Vector and Matrix Norms
6) Sensitivity of Linear Equations. Condition Number and Stability.
7) Iterative Methods for Linear Systems: Jacobi Method.
8) Gauss Seidel Method. Diagonally Dominant Matrix. Errors in Solving Linear Systems.
9) Eigenvalues and Eigenvectors: The Power Method. The Inverse Power Method.
10) System of Nonlinear Equations: Newton’s Method.
11) Interpolating and Polynomial Approximation: Lagrange interpolation polynomial, Newton Interpolation.
12) Piecewise Linear Interpolation, Cubic Spline.
13) Least Square Approximation: Curve Fitting.
14) Inconsistent System of Equations. Errors in Interpolation .

Sources

Course Notes / Textbooks: Numerical Methods Using MATLAB (Fourth Edition), John H. Mathews and Kurtis D. Fink, Pearson Prentice Hall
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 16 % 0
Laboratory 16 % 5
Quizzes 5 % 10
Midterms 2 % 45
Final 1 % 45
Total % 105
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 45
Total % 105

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 16 3 48
Laboratory 14 1 14
Study Hours Out of Class 16 2 32
Quizzes 3 5 15
Midterms 2 5 10
Final 1 5 5
Total Workload 124

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To gain both theoretical and practical knowledge about physical, cognitive, social-emotional aspects of child development. 4
2) To display actions in professional practice based on ethical principles and values. 5
3) To adopt the principle of lifelong learning, using efficient ways for accessing information. 5
4) To know the stages of child development and to be able to use models / theories efficiently for supporting children's cognitive, affective and psycho-motor development. 5
5) To plan, implement and evaluate professional projects, research and events with a sense of social responsibility, 5
6) To be able to use effective communication methods in counseling and child and family-based guidance. 3
7) To be sensitive to the child and family-related issues taking into account the child's stages of development, and to implement strategies for personal development of child and education methods which are vital for leading effective and productive life. 5
8) To use the education and communication materials according to the child development stage, and to create proper educational environment. 5
9) To take responsibilities in the field of child development and education using interdisciplinary approach, and to use information technologies, and to engage in projects and activities. 5
10) To use health information technologies for research in the field of child development. 5
11) To be able to monitor occupational information using at least one foreign language, to collaborate and communicate with colleagues at international level. 5
12) To become a good example for colleagues and society, and represent efficiently the professional identity using advanced knowledge about child development. 5