MECHATRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH4992 Capstone Project II Spring 0 4 2 6

Basic information

Language of instruction: English
Type of course: Must Course
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MEHMET BERKE GÜR
Recommended Optional Program Components: NA
Course Objectives: The students are expected to gain the following skills and knowledge: planning and managing a project, working in an interdisciplinary team, building a product according to correct engineering design concepts, validation and integration of system components, report writing and presenting.

Learning Outcomes

The students who have succeeded in this course;
The students who have succeeded in this course;
1) will have gained significantly contribute to the planning and management of a complex project
2) will have learned how to work in an interdisciplinary team
3) will have implemented a conceptual design considering a relevant set of engineering constraints
4) will have performed verification of an implemented design
5) will have gained skills in integration of ideas and systems
6) will have provided a working demonstration of the product
7) will have gained report writing and presentation skills

Course Content

Continuing with the project team and project proposal defined in "Capstone I", the students will implement their solution and demonstrate their working product at the end of the semester. A progress report, in the form of a written report and presentation will be given mid-term. A final report and presentation will be given at the end of the semester.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Organization of the project team
2) Execution
3) Execution
4) Execution
5) Execution
6) Execution
7) Execution
8) Midterm presentation and midterm progress Report
9) Execution
10) Execution
11) Execution
12) Integration and testing
13) Submission of the final report
14) Final presentation

Sources

Course Notes / Textbooks: Engineering by Design, 2nd Edition, Gerard Voland, Prentice Hall, ISBN-13: 978-0131409194
References: https://capstone.eng.bau.edu.tr/

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 2 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Application 14 10 140
Presentations / Seminar 2 1 2
Paper Submission 2 1 2
Total Workload 144

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Mechatronics Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. 4
2) Identify, formulate, and solve complex Mechatronics Engineering problems; select and apply proper modeling and analysis methods for this purpose. 5
3) Design complex Mechatronic systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. 5
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Mechatronics Engineering practice; employ information technologies effectively. 5
5) Design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Mechatronics Engineering. 5
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Mechatronics-related problems. 5
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. 5
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. 3
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Mechatronics Engineering applications. 5
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. 5
11) Acquire knowledge about the effects of practices of Mechatronics Engineering on health, environment, security in universal and social scope, and the contemporary problems of Mechatronics engineering; is aware of the legal consequences of Mechatronics engineering solutions. 3