GASTRONOMY (TURKISH)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
PTR4068 Assistive Technologies Spring 2 0 2 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Hybrid
Course Coordinator : Assoc. Prof. HASAN KEREM ALPTEKİN
Recommended Optional Program Components: None
Course Objectives: This course aims to present the knowledge and decision making skills to the students on the assistive technology needs of the people with disabilities.

Learning Outcomes

The students who have succeeded in this course;
1. To be able to decide assistive technology in the direction of the needs of the people with disabilities.
2. To acquire the ability to identify basic concepts of assistive technology.
3. To be able to explain robot-assisted rehabilitation systems.
4. To determine the World Health Organization - International Classification of Function (WHO-ICF) in the concept of assisive technology.

Course Content

This course provides the student with learning the principle concepts on assistive technology, the ways to support people with disabilities in the concept of rehabilitation engineering in house, society, school or work places to upgrade their functional and cognitive skills, including the topics below.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to assistive technology and rehabilitation engineering
2) World Health Organization - International Classification of Functioning (WHO-ICF)
3) Decision making in assistive technology
4) Robotic therapy in physiotherapy and rehabilitation
5) Principles of biomedical engineering in assistive technology
6) Commercial assistive technology products, sensor applications and design considerations of assistive technology devices
7) Mid term
8) Robotic assisted rehabilitation systems
9) Computer accessibility tools, sensory aids, mobile devices, activity monitoring
10) Exoskeletons and robotic locomotion
11) Student studies in assistive technology
12) Stimulation of vagus nerve, innovation of new products and technology development
13) Student studies in assistive technology
14) Student studies in assistive technology

Sources

Course Notes / Textbooks: Haftalık olarak verilecektir. - Will be given weekly.
References: 1. WHO (2001) International Classification of Functioning, Disability and Health (ICF). Geneva: World Health Organization
2. Henderson, S., Skelton, H. & amp; Rosenbaum, P. (2008). Assistive Devices for Children with Functional Impairments impact on child and Caregiver Function. Developmental Medicine & Child Neurology, 50: 89–98 
3. LoPresti, E.F., Mihailidis, A. & Kirsch, N. (2004) Assistive Technology for Cognitive Rehabilitation: State of the Art. Nurophysiological Rehabilitation, 14 (1/2), 5–39
4. Assistive Technology Decision Tree by UnumProvident (1999) http://www.microsoft.com/enable/download/default.aspx#righttech.
Accsess time : 30 th may 2011.
5. Galvin, J. C., Scherer, M. J. (1996). Evaluating, Selecting, and Using Appropriate Assistive Technology. Maryland: An Aspen Publication

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 13 % 0
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 13 2 26
Study Hours Out of Class 14 9 126
Midterms 1 2 2
Final 1 2 2
Total Workload 156

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) - Possess advanced level theoretical and practical knowledge supported by textbooks with updated information, practice equipments and other resources.
2) Use of advanced theoretical and practical knowledge within the field. -Interpret and evaluate data, define and analyze problems, develop solutions based on research and proofs by using acquired advanced knowledge and skills within the field.
3) Inform people and institutions, transfer ideas and solution proposals to problems in written and orally on issues in the field. - Share the ideas and solution proposals to problems on issues in the field with professionals and non-professionals by the support of qualitative and quantitative data. -Organize and implement project and activities for social environment with a sense of social responsibility. -Monitor the developments in the field and communicate with peers by using a foreign language at least at a level of European Language Portfolio B1 General Level. -Use informatics and communication technologies with at least a minimum level of European Computer Driving License Advanced Level software knowledge.
4) Evaluate the knowledge and skills acquired at an advanced level in the field with a critical approach. -Determine learning needs and direct the learning. -Develop positive attitude towards lifelong learning.
5) Act in accordance with social, scientific, cultural and ethic values on the stages of gathering, implementation and release of the results of data related to the field. - Possess sufficient consciousness about the issues of universality of social rights, social justice, quality, cultural values and also, environmental protection, worker's health and security.
6) Conduct studies at an advanced level in the field independently. - Take responsibility both as a team member and individually in order to solve unexpected complex problems faced within the implementations in the field. - Planning and managing activities towards the development of subordinates in the framework of a project