INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME3008 Therapeutic Medical Devices Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BORA BÜYÜKSARAÇ
Course Objectives: • Give the principles of medical therapeutic devices and their functions and teach their specific requirements.
• Describe the functional differences between diagnostic and therapeutic devices.
• Define the design goals of therapeutic medical devices.

Learning Outcomes

The students who have succeeded in this course;
Learns the principles of medical therapeutic devices and their functions.
Knows the differences in function between diagnostic and therapeutic devices.
Gains knowledge on the design goals of therapeutic medical devices.

Course Content

Fundamentals of therapeutic devices and their working principles. Pacemakers, defibrillators, cardiac assist devices, hemodialysis, lithotripsy, ventilators, drug infusion pumps, electrosurgical unit.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to therapeutic medical devices
2) Pacemakers, cardiac anatomy, heart block
3) Asynchronous cardiac pacemaker
4) Timing circuit, output circuit, lead wires and electrodes
5) Synchronous pacemakers
6) Pacemaker timing cycles, single chamber timing, dual chamber timing
7) Pacemaker mediated tachycardia
8) Defibrillators, charging/discharging examples
9) Cardiac-assist devices, intra-aortic balloon pump
10) Hemodialysis
11) Lithotripsy
12) Ventilators
13) Drug infusion pumps
14) Electrosurgical unit

Sources

Course Notes / Textbooks: John G. Webster, Medical Instrumentation Application and Design, 4th Edition
Wiley, ISBN-13: 978-0471676003, ISBN-10: 0471676004
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Quizzes 3 1 3
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments