CIVIL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME3008 Therapeutic Medical Devices Fall
Spring
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BORA BÜYÜKSARAÇ
Course Objectives: • Give the principles of medical therapeutic devices and their functions and teach their specific requirements.
• Describe the functional differences between diagnostic and therapeutic devices.
• Define the design goals of therapeutic medical devices.

Learning Outcomes

The students who have succeeded in this course;
Learns the principles of medical therapeutic devices and their functions.
Knows the differences in function between diagnostic and therapeutic devices.
Gains knowledge on the design goals of therapeutic medical devices.

Course Content

Fundamentals of therapeutic devices and their working principles. Pacemakers, defibrillators, cardiac assist devices, hemodialysis, lithotripsy, ventilators, drug infusion pumps, electrosurgical unit.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to therapeutic medical devices
2) Pacemakers, cardiac anatomy, heart block
3) Asynchronous cardiac pacemaker
4) Timing circuit, output circuit, lead wires and electrodes
5) Synchronous pacemakers
6) Pacemaker timing cycles, single chamber timing, dual chamber timing
7) Pacemaker mediated tachycardia
8) Defibrillators, charging/discharging examples
9) Cardiac-assist devices, intra-aortic balloon pump
10) Hemodialysis
11) Lithotripsy
12) Ventilators
13) Drug infusion pumps
14) Electrosurgical unit

Sources

Course Notes / Textbooks: John G. Webster, Medical Instrumentation Application and Design, 4th Edition
Wiley, ISBN-13: 978-0471676003, ISBN-10: 0471676004
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Quizzes 3 1 3
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.