GASTRONOMY (TURKISH)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4403 Inventron - Applied Electronics and PCB Design Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ZAFER İŞCAN
Recommended Optional Program Components: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
Course Objectives: The goal of this course to prepare students to enter the fast-paced world of electronics by applying the theoretical knowledge, learned in their foundation courses on analog and digital electronics, on a printed circuit board. Students will realise at least one printed circuit board project during the course.

Learning Outcomes

The students who have succeeded in this course;

1) Identifying the parameters of passive and active electronic components from technical datasheets
2) Schematic design of electronic circuits and simulation of the designed circuit
3) Designing pcb footprints of electronic components
4) Describing fundemantals of pcb design
5) Decribing multilayer (2-32) pcb design
6) Describing the fundementals of analog circuit design on pcb
7) Describing the fundementals of high speed digital circuit design on pcb
8) Explaning signal integrity and differential signal routing and crosstalk
9) Describing the fundementals of power circuit and RF circuit design on pcb
10) Explaning pcb manufacturing processes, gerber creation and IPC standards
11) Defining EMC guidelines for pcb layout

Course Content

Printed circuit board design, schematic design, defining footprint , parameters of
electronic components, multilayer pcb design, analog pcb design, high speed digital pcb design, signal integrity, differential signal routing, power pcb layout RF pcb layout, EMC guidelines, IPC, gerber, pcb manufacturing, circuit simulation, performance and limitations of physical components, crosstalk, cross coupling

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes / Textbooks: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
Total %

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) - Possess advanced level theoretical and practical knowledge supported by textbooks with updated information, practice equipments and other resources.
2) Use of advanced theoretical and practical knowledge within the field. -Interpret and evaluate data, define and analyze problems, develop solutions based on research and proofs by using acquired advanced knowledge and skills within the field.
3) Inform people and institutions, transfer ideas and solution proposals to problems in written and orally on issues in the field. - Share the ideas and solution proposals to problems on issues in the field with professionals and non-professionals by the support of qualitative and quantitative data. -Organize and implement project and activities for social environment with a sense of social responsibility. -Monitor the developments in the field and communicate with peers by using a foreign language at least at a level of European Language Portfolio B1 General Level. -Use informatics and communication technologies with at least a minimum level of European Computer Driving License Advanced Level software knowledge.
4) Evaluate the knowledge and skills acquired at an advanced level in the field with a critical approach. -Determine learning needs and direct the learning. -Develop positive attitude towards lifelong learning.
5) Act in accordance with social, scientific, cultural and ethic values on the stages of gathering, implementation and release of the results of data related to the field. - Possess sufficient consciousness about the issues of universality of social rights, social justice, quality, cultural values and also, environmental protection, worker's health and security.
6) Conduct studies at an advanced level in the field independently. - Take responsibility both as a team member and individually in order to solve unexpected complex problems faced within the implementations in the field. - Planning and managing activities towards the development of subordinates in the framework of a project