COP4403 Inventron - Applied Electronics and PCB DesignBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4403 Inventron - Applied Electronics and PCB Design Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ZAFER İŞCAN
Recommended Optional Program Components: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
Course Objectives: The goal of this course to prepare students to enter the fast-paced world of electronics by applying the theoretical knowledge, learned in their foundation courses on analog and digital electronics, on a printed circuit board. Students will realise at least one printed circuit board project during the course.

Learning Outcomes

The students who have succeeded in this course;

1) Identifying the parameters of passive and active electronic components from technical datasheets
2) Schematic design of electronic circuits and simulation of the designed circuit
3) Designing pcb footprints of electronic components
4) Describing fundemantals of pcb design
5) Decribing multilayer (2-32) pcb design
6) Describing the fundementals of analog circuit design on pcb
7) Describing the fundementals of high speed digital circuit design on pcb
8) Explaning signal integrity and differential signal routing and crosstalk
9) Describing the fundementals of power circuit and RF circuit design on pcb
10) Explaning pcb manufacturing processes, gerber creation and IPC standards
11) Defining EMC guidelines for pcb layout

Course Content

Printed circuit board design, schematic design, defining footprint , parameters of
electronic components, multilayer pcb design, analog pcb design, high speed digital pcb design, signal integrity, differential signal routing, power pcb layout RF pcb layout, EMC guidelines, IPC, gerber, pcb manufacturing, circuit simulation, performance and limitations of physical components, crosstalk, cross coupling

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes / Textbooks: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
Total %

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems. 4
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. 4
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.) 3
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively. 3
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems. 1
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.