CGB3072 Behavior Management in ChildhoodBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CGB3072 Behavior Management in Childhood Fall 2 0 2 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi NESRİN GÜLÜM
Course Objectives: To teach the students to learn appropriate observation techniques such as recording and transcribing, how to set target behaviors and will have theoretical background about setting target behaviors

Learning Outcomes

The students who have succeeded in this course;
At the end of the course students will learn appropriate observation techniques such as recording and transcribing, how to set target behaviors and will have theoretical background about setting target behaviors.Has knowledge about innovations in his field.

Course Content

Observation and assessment of problem behaviors with appropriate observation techniques, principles and methods of problem behavior management.

Weekly Detailed Course Contents

Week Subject Related Preparation
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14) The usage of new technologies

Sources

Course Notes / Textbooks: Özyürek, M. (2004). Sınıfta Davranış Değiştirme: Uygulamalı Davranış Analizi. Kök Yayıncılık: Ankara.
Austin, V.L., Sciarra, D.T. / Çeviri Editörü: Dr. Mustafa Özekes (2012). Çocuk ve Ergenlerde Duygusal ve Davranışsal Bozukluklar / Children and Adolescents with Emotional and Behavioral Disorders. Nobel Yayıncılık.
References: Bayhan, S. B. & Artan, İ. (2004). Çocuk Gelişimi ve Eğitimi. Morpa Kültür Yayınları. Berk, L.E. (1999), Infants, Children and Adolescents, Third Edition, A Viacom Company, U.S.A. Craig, Grace J. (1999), Human Development, 8th Edition, Prentice-Hall,Inc,U.S.A.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Homework Assignments 1 % 20
Midterms 1 % 20
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 12 10 120
Midterms 1 1 1
Final 1 1 1
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.