INDUSTRIAL PRODUCTS DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4003 Comparative Genomics and Proteomics Spring 2 0 2 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi EMİNE KANDEMİŞ
Recommended Optional Program Components: There is none.
Course Objectives: The objective of this course is to provide information about the "omics" technology, especially focusing on genomics and proteomics. The recent applications of these areas and relevant bioinformatics background will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1. Define the "omics" technologies.
2. Discuss the technologies behind genomics and proteomics studies.
3. Discuss the applications of both structural and functional genomics and also the proteomics studies.
4. Define basic information about bioinformatics.
5. Recognize the importance of these technologies in modern genetics.

Course Content

Computational, molecular and genetic methodologies are covered including applications in structural and functional genomics (genome analysis and comparative genomics, technologies for transcriptional profiling), proteomics and related bioinformatics.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The rise of "omics" technology Reading
2) The organization and structure of genomes Reading
3) Genome mapping Reading
4) Genome-Sequencing projects Reading
5) Functional Genomics I Reading
6) Functional Genomics II Reading
7) Analysis of the transcriptome Reading
8) Comparative genomics Reading
9) Overview Reading
10) Proteomics I Reading
11) Proteomics II Reading
12) Proteomics III Reading
13) Applications I Reading
14) Applications II Reading

Sources

Course Notes / Textbooks: Ders notları haftalık olarak verilecektir.
Course notes will be supplied weekly.

References: 1)Discovering genomics, proteomics and bioinformatics, Campbell AM and Heyer LJ, 2nd edition, 2007, Pearson education Inc., ISBN: 0-8053-8219-4
2)Bioinformatics and Functional genomics, Pevsner J, 2nd edition, 2009, John Wiley & Sons Inc., ISBN: 978-0-470-08585-1
3)Principles of gene manipulation and genomics, Primrose SB and Tywan RM, 7th edition, 2006, Blacwell Publishing, ISBN: 9781405135443"

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Quizzes 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Presentations / Seminar 1 20 20
Midterms 1 17 17
Final 1 18 18
Total Workload 125

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Having the theoretical and practical knowledge proficiency in the discipline of industrial product design
2) Applying professional knowledge to the fields of product, service and experience design development
3) Understanding, using, interpreting and evaluating the design concepts, knowledge and language
4) Knowing the research methods in the discipline of industrial product design, collecting information with these methods, interpreting and applying the collected knowledge
5) Identifying the problems of industrial product design, evaluating the conditions and requirements of problems, producing proposals of solutions to them
6) Developing the solutions with the consideration of social, cultural, environmental, economic and humanistic values; being sensitive to personal differences and ability levels
7) Having the ability of communicating the knowledge about design concepts and solutions through written, oral and visual methods
8) To identify and apply the relation among material, form giving, detailing, maintenance and manufacturing methods of design solutions
9) Using the computer aided information and communication technologies for the expression of industrial product design solutions and applications
10) Having the knowledge and methods in disciplines like management, engineering, psychology, ergonomics, visual communication which support the solutions of industrial product design; having the ability of searching, acquiring and using the knowledge that belong these disciplines when necessary.
11) Using a foreign language to command the jargon of industrial product design and communicate with the colleagues from different cultures
12) Following and evaluating the new topics and trends that industrial product design needs to integrate according to technological and scientific developments