MBG4003 Comparative Genomics and ProteomicsBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4003 Comparative Genomics and Proteomics Spring 2 0 2 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi EMİNE KANDEMİŞ
Recommended Optional Program Components: There is none.
Course Objectives: The objective of this course is to provide information about the "omics" technology, especially focusing on genomics and proteomics. The recent applications of these areas and relevant bioinformatics background will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1. Define the "omics" technologies.
2. Discuss the technologies behind genomics and proteomics studies.
3. Discuss the applications of both structural and functional genomics and also the proteomics studies.
4. Define basic information about bioinformatics.
5. Recognize the importance of these technologies in modern genetics.

Course Content

Computational, molecular and genetic methodologies are covered including applications in structural and functional genomics (genome analysis and comparative genomics, technologies for transcriptional profiling), proteomics and related bioinformatics.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The rise of "omics" technology Reading
2) The organization and structure of genomes Reading
3) Genome mapping Reading
4) Genome-Sequencing projects Reading
5) Functional Genomics I Reading
6) Functional Genomics II Reading
7) Analysis of the transcriptome Reading
8) Comparative genomics Reading
9) Overview Reading
10) Proteomics I Reading
11) Proteomics II Reading
12) Proteomics III Reading
13) Applications I Reading
14) Applications II Reading

Sources

Course Notes / Textbooks: Ders notları haftalık olarak verilecektir.
Course notes will be supplied weekly.

References: 1)Discovering genomics, proteomics and bioinformatics, Campbell AM and Heyer LJ, 2nd edition, 2007, Pearson education Inc., ISBN: 0-8053-8219-4
2)Bioinformatics and Functional genomics, Pevsner J, 2nd edition, 2009, John Wiley & Sons Inc., ISBN: 978-0-470-08585-1
3)Principles of gene manipulation and genomics, Primrose SB and Tywan RM, 7th edition, 2006, Blacwell Publishing, ISBN: 9781405135443"

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Quizzes 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Presentations / Seminar 1 20 20
Midterms 1 17 17
Final 1 18 18
Total Workload 125

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.