CHILD DEVELOPMENT (TURKISH)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG3002 Techniques in Biological Sciences Fall 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi EMİNE KANDEMİŞ
Recommended Optional Program Components: There is none.
Course Objectives: The aim of this course is to form a substantial theoretical basis to understand key experimental techniques used in modern molecular biology research.

Learning Outcomes

The students who have succeeded in this course;
1. Discuss DNA isolation, quantification, agarose gel electrophoresis
2. Define Polymerase Chain Reaction (PCR), principle, basic applications, optimization
3. Define Recombinant DNA technology (gene overexpression and silencing vectors, cloning, transfection, transformation)
4. Evaluate DNA Sequence analysis, Southern Blot
5. Define about RNA isolation, quantification, cDNA synthesis, cDNA library construction
6. Define Q-PCR, RT-PCR. miRNA
7. Define Microarray analysis and Northern Blot
8. Identify about Protein isolation, quantification, SDS-PAGE, Commassie Staining
9. Discuss Western Blot, Immunostaining, Protein imaging techniques
10. Define Protein purification techniques
11. Evaluate about Protein-protein interaction analysis (phage display, yeast two hybrid)

Course Content

Experimental techniques course will provide an intensive exposure to the experimental techniques used in molecular biology. It is mainly based on DNA, RNa and protein analysis techniques.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to course Reading
2) DNA isolation, quantification, agarose gel electrophoresis Reading
3) Polymerase Chain Reaction (PCR), principle, basic applications, optimization Reading
4) Recombinant DNA technology (gene overexpression and silencing vectors, cloning, transfection, transformation) Reading
5) DNA Sequence analysis, Southern Blot Reading
6) RNA isolation, quantification, cDNA synthesis, cDNA library construction Reading
7) Q-PCR, RT-PCR. miRNA Reading
8) Microarray analysis and Northern Blot I Reading
9) Microarray analysis and Northern Blot II Reading
10) Protein isolation, quantification, SDS-PAGE, Commassie Staining Reading
11) Western Blot, Immunostaining, Protein imaging Reading
12) Protein purification techniques Reading
13) Protein-protein interaction analysis (phage display, yeast two hybrid)-I Reading
14) Protein-protein interaction analysis (phage display, yeast two hybrid)-II Reading

Sources

Course Notes / Textbooks: Ders notları haftalık olarak verilecektir.
Course notes will be supplied weekly.
References: 1. Current Protocols in Molecular Biology, Wiley Online Library, ISBN: 9780471142720
2. Lab Math, Dany Spencer Adams, CSHL Press, 2003, ISBN 0879696346, 9780879696344
3. Lab Ref, Albert S. Mellick, Linda Rodgers Cold Spring Harbor Laboratory Press, ISBN-13: 978-0879698157
4. Molecular Cloning: A Laboratory Manual, Joseph Sambrook, David William Russell, CSHL Press, 2001, ISBN 0879695773, 9780879695774

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Quizzes 2 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Midterms 1 17 17
Final 1 18 18
Total Workload 175

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To gain both theoretical and practical knowledge about physical, cognitive, social-emotional aspects of child development. 4
2) To display actions in professional practice based on ethical principles and values. 5
3) To adopt the principle of lifelong learning, using efficient ways for accessing information. 5
4) To know the stages of child development and to be able to use models / theories efficiently for supporting children's cognitive, affective and psycho-motor development. 5
5) To plan, implement and evaluate professional projects, research and events with a sense of social responsibility, 5
6) To be able to use effective communication methods in counseling and child and family-based guidance. 3
7) To be sensitive to the child and family-related issues taking into account the child's stages of development, and to implement strategies for personal development of child and education methods which are vital for leading effective and productive life. 5
8) To use the education and communication materials according to the child development stage, and to create proper educational environment. 5
9) To take responsibilities in the field of child development and education using interdisciplinary approach, and to use information technologies, and to engage in projects and activities. 5
10) To use health information technologies for research in the field of child development. 5
11) To be able to monitor occupational information using at least one foreign language, to collaborate and communicate with colleagues at international level. 5
12) To become a good example for colleagues and society, and represent efficiently the professional identity using advanced knowledge about child development. 5