MBG4065 Introduction to Stem CellsBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4065 Introduction to Stem Cells Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: In this course, student should learn about the basic biology of embryonic, adult and cancer stem cells, molecular mechanisms of self renewal, differentiation and plasticity, reproductive and therapeutic cloning, epigenetic changes associated with stem cells, use of stem cells in cell based therapies and its ethical considerations.

Learning Outcomes

The students who have succeeded in this course;
1. Have a general understanding on stem cell biology.
2. Learn the basic features of stem cells and discuss the related mechanisms beneath.
3. Understand the effects of stem cells on the epigenetic changes.
4. Discuss stem cell based therapies and the related ethical issues stem from the uses of those therapies.
5. Categorize the stem cells.

Course Content

Basic biology of embryonic, adult and cancer stem cells. Molecular mechanisms of self renewal, differentiation and plasticity. Reproductive and therapeutic cloning. Epigenetic changes associated with stem cells. Use of stem cells in cell based therapies and its ethical considerations.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and classification of stem cells
2) Basic biology of stem cells (self-renewal, pluripotency, plasticity, asymmetric division, niche)
3) Embryonic Stem Cells
4) Epiblast Stem Cells
5) Induced Pluripotent Stem Cells
6) Germline Stem Cells, Epigenetic Reprogramming I
7) Germline Stem Cells, Epigenetic Reprogramming II
8) Cancer Stem Cells
9) Mesenchymal Stem Cells
10) Hematopoeitic stem cells
11) Organ Specific Stem Cells (Neural- Vascular Endothelial, Pancreatic)
12) Organ Specific Stem Cells (Hepatic, Cardiac)
13) Organ Specific Stem Cells (Epidermal, Lung)
14) Review

Sources

Course Notes / Textbooks: Weekly course notes will be provided
References: Stem Cells Handbook, Steward Sell Publisher, 2003,ISBN 13: 9781588291134

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 5
Homework Assignments 1 % 15
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 1 2 2
Final 1 2 2
Total Workload 158

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.