MBG4061 ImmunologyBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4061 Immunology Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of immune deficiency and autoimmune diseases.

Learning Outcomes

The students who have succeeded in this course;
1. Can comprehend the essential roles of immune system according to the knowledge of immun system components they gain during the course.
2. Can discriminate the immune system types by comparing their components and their functions
3. Can schema the immun response effector mechanism by learning the crosstalk of cells and molecules
4. Can find association between immune response and the pathogenesis of immun deficiency and autoimmune disease.
5. Can comprehend the immunological methods working principles by using the knowledg in advanced molecular biological methods.
6. Can reach the information about adaptive and humaral immune deficiency syndromes accorindg to scientific papers, assimilate and discusss the knowledge

Course Content

To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of the immune deficiency and autoimmune diseases

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Immunology
2) Cells and tissues of the immune system
3) Innate immunity
4) Antigen processing and presentation to T cell
5) Antigen detection by adaptive immunity
6) Cell mediated immune responses
7) Effector mechanism of cell mediated immunity
8) Humoral immunity
9) Effector mechanism of humeral immunity
10) Hypersensitivity and types
11) Innate and adaptive immunodeficiency
12) Immunological tolerance and autoimmunity
13) Immune response to tumors and transplantation and rejection
14) Cytokines, chemokine, their receptors and techniques in immunology

Sources

Course Notes / Textbooks: 1. Basic Immunology Updated Edition: Functions and Disorders of the Immune System AK. Abbas, AH. Lichtman, 3. Edition, Saunders, 2010.
-Kuby Immunology, TJ. Kindt, BA. Osborne, RA. Goldsby, 6th edition, W. H. Freeman & Company, 2006.
-Janeway's Immunobiology, KM. Murphy, P Travers, M Walport, 7 edition, Garland Science, 2007.
-Immunology: A Short Course, R. Coico, G Sunshine, 6. Edition, Wiley-Blackwell, 2009.
-Roitt's Essential Immunology, PJ Delves, SJ Martin, DR Burton, IM Roitt, 12 edition, Wiley-Blackwell, 2011."
References: 1. www.sciencedirect.com
2. www.ncb.nlm.nih.gov.tr

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Presentation 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Presentations / Seminar 2 4 8
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.