MBG4057 Special Topics in BioinformaticsBahçeşehir UniversityDegree Programs CARTOON AND ANIMATIONGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CARTOON AND ANIMATION
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4057 Special Topics in Bioinformatics Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: This course aims to discuss technical papers from the recent bioinformatics literature, examine their algorithms and conduct an intensive study on a specific bioinformatics problem.

Learning Outcomes

The students who have succeeded in this course;
1. Define the open research questions in bioinformatics.
2. Discuss current solutions to tackle bioinformatics problems.
3. Develop an ability to discuss open research issues in computational biology.
4. Acquire an understanding of existing bioinformatics solutions for genomics.
5. Acquire an understanding of existing bioinformatics solutions for proteomics.
6. Develop an ability to focus on several bioinformatics articles and present their findings.
7. Obtain a familiarity with emerging topics in bioinformatics.
8. Obtain a familiarity with emerging topics in computational biology.
9. Develop an ability to find, read and discuss scientific articles published in the bioinformatics field.

Course Content

This discussion-based bioinformatics course will expose students to the latest developments in bioinformatics analyses and algorithms.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Genomics (genome sequencing, storage and study of genome information, genome databases)
2) Genomics (polymorphism in the human genome and association with diseases)
3) Comparative genomics (genome subtraction method, whole-genome alignment methods, genome-context methods, gene-fusion method)
4) Structural genomics (the scientific program of structural genomics, target selection in structural genomics)
5) Functional genomics (integration of experimental and computational methods)
6) Functional genomics (gene-expression data and DNA micro-arrays)
7) Functional genomics (regulatory networks, protein-protein interaction networks)
8) Proteomics, Protein folding and fold recognition
9) Epigenomics
10) Cancer informatics
11) Non-coding RNA identification and search
12) Emerging topics in bioinformatics
13) Emerging topics in computational biology
14) Presentations

Sources

Course Notes / Textbooks: Haftalık ders notları iletilecektir.
Course notes will be supplied.
References: Articles from the primary literature (scientific journals, e.g. Nature Reviews Genetics, Nature, Science, Genome Research, Nature Genetics, Nature Methods, Bioinformatics, Molecular Systems Biology etc.)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 15
Project 1 % 25
Midterms 1 % 10
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 25
PERCENTAGE OF FINAL WORK % 75
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 1 2 2
Final 1 2 2
Total Workload 158

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have theoretical and practical knowledge and skills in cartoon and animation.
2) To be able to develop research, observation-experience, evaluation skills in the field of cartoon and animation and effectively communicate ideas, convincing actions and emotions using cartoon and animation and performance principles in every direction.
3) Making animated films with various artistic styles and techniques.
4) Designing the cartoon and animation production process using initiative, applying it with creativity and presenting it with personal style.
5) To be a team member in the production process of cartoon and animations, to be able to take responsibility and manage the team members under their responsibility and to lead them.
6) To be able to evaluate cartoon and animations in the framework of their knowledge and skills.
7) To be able to define and manage learning requirements in the field of cartoon and animation.
8) To be able to communicate with related organizations by sharing scientific and artistic works in cartoon and animation and to share information and skills in the field.
9) To monitor developments in the field of cartoon and animation using foreign languages ​​and to communicate with foreign colleagues.
10) To be able to use general information and communication technologies at advanced level with all kinds of technical tools and computer software used in cartoon and animations.
11) Using critical thinking skills and problem solving strategies in all aspects of development and production, effectively communicating ideas, emotions and intentions visually, verbally and in writing, and effectively incorporating technology in the development of cartoon and animation projects.
12) To have sufficient knowledge about ethical values ​​and universal values ​​in the field of cartoon and animation.