BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4052 Plant Biology and Genetics Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: The objective of this course is to introduce the basic concepts in the areas of plant biology and plant genetics. Also, the latest improvements and important technologies used in plant biotechnology will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1. Define how the system works in plants.
2. Discuss the structure, physiology and development of plants.
3. Recognize the importance of plant diversity.
4. Define plant genetics and breeding.
5. Define plant biotechnology.
6. Discuss the latest improvements in plant science.
7. Discuss the importance of plants for the world.

Course Content

An introductory course on plant sciences and genetics, including topics on plant structure, physiology and development as well as subjects related with plant genetics and biotechnology.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Plant structure and function I
3) Plant structure and function II
4) Plant physiology
5) Plant growth and development
6) Plant reproduction
7) Plant diversity
8) Overview
9) Plant genetics: Introduction
10) Special topics in plant genetics
11) Advances in plant genetics
12) Plant breeding and propagation
13) Plant biotechnology I
14) Plant biotechnology II

Sources

Course Notes / Textbooks: Course notes will be supplied
References: 1) Plant, genes and crop biotechnology, Chrispeels MJ and Sadava DE,2nd edition, 2003, Johns and Bartlett Publishers Inc., ISBN 0-7637-1586-7.
2) Introductory plant biology, Kingsley R Stern, James E Bidlack,
and Shelley H Jansky, 12th edition, 2011, McGraw-Hill Higher Education, ISBN: 0073040525.
3) Plant Biotechnology and genetics: Principles, techniques and applications, Stewart CN, 2008, Wiley and Sons. NJ.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Presentation 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Presentations / Seminar 1 2 2
Final 1 2 2
Total Workload 158

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.