ENERGY AND ENVIRONMENT MANAGEMENT (TURKISH, NON-THESIS)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4907 Hasen- Energy Politics and Strategies Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level:
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi GÜRKAN SOYKAN
Course Objectives: In a global perspective, energy policies serve multiple goals, including those of;
(a) meeting increasing energy demand, driven in large part by growing populations and rising incomes,
(b) satisfying basic needs of about billions of people who suffer badly from inadequate access to usable energy, and
(c) responding to the increasing risk of severe environmental damage caused by prevailing patterns of energy production, distribution and consumption.
Moreover, energy policies are inextricably linked to geopolitical concerns about energy security and to competition in international markets and international politics.

Learning Outcomes

The students who have succeeded in this course;
1) Identify energy policy knowledge and needs at various governmental and entity levels
2) Describe general terms and basic concepts
3) Examine existing or proposed energy policy critically; expose errors, find unintended consequences of implementation, offer suggestions for improvement
4) Identify the drivers of energy policy from political, environmental, and economic perspectives; and explain how these drivers can exist either in conflict or complement of each other
5) Understand the concept of energy policy and develop strategies to decide on policy.

Course Content

Energy policy in Turkey, comparison with Europe, renewable energy and smart grid policies, the future of energy policy, strategy development according to situation.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Course Overview and Introduction to Energy Policy
2) Introduction to Electricity
3) Energy Policies: An overview
4) Energy Policy in Turkey
5) Renewable Energy and Public Policy
6) Renewable Energy and Smart Grid Policies
7) Comparison of Policy with Europe
8) Energy Policy and Security
9) Energy Information Reports
10) Energy Databases
11) The Future of Energy Policy
12) Energy Strategies
13) Developing Energy Strategies
14) Case Studies

Sources

Course Notes / Textbooks: Fred Bosselman et al., Energy, Economics and the Environment: Cases and Materials, 3rd Edition (Foundation Press: 2010)
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 17 6 102
Midterms 1 2 2
Final 1 2 2
Total Workload 148

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Integration and application of limited or missing information by using scientific methods and ability to combine information from different disciplines
2) Gaining the abilitiy to reach the knowledge by employing scientific research and literature survey
3) Building energy and environment-oriented engineering problems, producing solutions by employing innovative methods
4) Gaining ability to develop innovative and original ideas, designs and the solutions
5) Gaining knowledge and information on modern techniques and methods that are available in engineering applications and comprhensive knowledge on adaptation and applicability of these techniques
6) Ability to employ analytical, modeling, and experimental design, and implement research-based applications; ability to analyze and interpret complex conditions might occure during this process
7) Leadership in multi-disciplinary teams, offering solutions for complex cases and undertaking responsibility in such cases
8) Expressing professional skills and results of the studies verbally or written in national or international environments
9) Adequacy on consideration of social, scientific and ethical values on any professional work
10) Awareness about innovations on operations and application areas of the profession and ability to review and learn improvements when necessary
11) Understanding social and environmental extents of engineering applications and ability to harmony with the social environment