VCD4147 Computational DesignBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
VCD4147 Computational Design Spring 2 2 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi İPEK TORUN
Course Lecturer(s): Instructor SERKAN ŞİMŞEK
Recommended Optional Program Components: VCD3115 - Introduction to Multimedia VCD3114 – Interactive Arts & Design
Course Objectives: On this course, the students recognize the basics of Computational Design and design scopes of interactive media such as procedural design, algorithmic design, data visualization and code art. They develop applications of conceptual works for interactive media and study software skills to realize this projects. In addition, researches for interactive media fields is identified by the students.

Learning Outcomes

The students who have succeeded in this course;
1. Being able to solve design problems with algorithmic and computational thoughts
2. Advancing the theory and practice on computer arts
3. Advancing the theory and practice on computer programming
4. Developing the interactive design solutions
5. Preparing conceptual, entertainment, game projects.

Course Content

1. Computational Design
2. Algorithmic Design
3. CodeArt
4. Interactive Media Design
5. Experience Design
6. Procedural Sound Design
7. Aesthetics & Computation
8. Computer Art History
9. Code Basics

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to the Course. Everybody will introduce her/himself. The course will be introduced.
2) Introduction to the Computational Design. Scopes of Computational Design.
3) Computer Art History. Examples of Art & Design Works Announcement: HW1
4) Code Artists. Examples of Art & Design Works. Announcement: HW2.
5) Programming Environment & Code Basics. Introduction to the Processing Environment. Announcement: HW3.
6) Using “Class” Structures for Design. Programming Skills for Design. Announcement: HW4.
7) Using “Array” Structures for Design. Programming Skills for Design. Announcement: HW5.
8) Using “Transform” Structures for Design. Programming Skills for Design. Announcement: HW6.
9) Using “3D” Structures for Design. Programming Skills for Design. Announcement: HW7.
10) Using “External Libraries” Structures for Design. Programming Skills for Design. Announcement: HW8.
11) Final: Criticise Project Proposal. Developing A Design Project.
12) Final: Project Evaluation. Developing A Design Project.
13) Final: Project Evaluation. Developing A Design Project.
14) Final: Project Evaluation. Developing A Design Project.

Sources

Course Notes / Textbooks:
References: 1 Algorithms for Visual Design - Kostas Terzidiz
2 Programming Interactivity - Joshua Noble
3 Making Things Talk - Tom Igoe
4 Learning Processing - Daniel Shiffman
5 Processing Creative Coding and Computational Art - Ira Greenberg
6 A Programming Handbook for Visual Designers and Artists - Casey Reas, Ben Fry

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 4 % 40
Project 1 % 20
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 56
Study Hours Out of Class 14 49
Final 2 20
Total Workload 125

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.