GAD5204 Playful Experience DesignBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GAD5204 Playful Experience Design Fall 3 0 3 8
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi GÜVEN ÇATAK
Recommended Optional Program Components: None
Course Objectives: This course will be focusing on integrating game elements into everyday life and experience design applications by presenting playful experiences to the users, while suggesting a hybrid interactive analysis through including digital and analogue tools inspecting player motivations as well as the place of games in contemporary art scene.

Learning Outcomes

The students who have succeeded in this course;
The students who have succeeded in this course
1) Understand the fundementals of game and play
2) Define, measure and evaluate the different metrics and key performance indicators for applications that provide playful experience across a range of dimensions
3) Design, develop, and evaluate a playful interaction concept project for a real-world case
4) Percieve fundemental methods and theory related to player experience
5) Understand game design and game studies, as well as user experience perspectives for interaction design, and human computer interaction
6) Apply behaviour analysis via playful interaction
7) Form relation between game elements and personal motivations for gamification projects

Course Content

In order to understand how game works and how the concept of play is and can be integrated to our lives, students must understand the fundementals of game experience approaches, business reflections and applications of game design. The course will give a hands-on approach to play theory, and an academic understanding of the practice of playful experience design.

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes / Textbooks: Too much fun: Toys as social problems and the interpretation of culture. Best, Joel. 1998 The Practice of Everyday Life, Michel de Certeau (1974)
Csikszentmihalyi, M., Beyond Boredom and Anxiety. The Experience of Play in Work and Games,1975 (Jossey-Bass Publishers).
References: Why We Play Games: Four Keys to More Emotion Without Story. Lazzaro, N. 2004

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
Total %

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.