ARC3967 Urban Design TheoryBahçeşehir UniversityDegree Programs CIVIL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CIVIL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ARC3967 Urban Design Theory Fall
Spring
2 0 2 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi NESLİHAN AYDIN YÖNET
Course Lecturer(s): Dr. Öğr. Üyesi NESLİHAN AYDIN YÖNET
Recommended Optional Program Components: .
Course Objectives: The main objective of this course is to define contemporary urban design theory in an interdisciplinary framework that includes architecture, planning, and landscape design

Learning Outcomes

The students who have succeeded in this course;

- Understanding of the diverse needs, values, behavioral norms, physical abilities, and social and spatial patterns that characterize different cultures and individuals. At the same time understanding the roles and responsibilities of urban designers and architects in it.
- Understanding of the relationship between human behaviour, the natural environment, and the design of the built environment.
- Ability to examine and comprehend the fundamental principles present in relevant precedents and to make choices regarding the incorporation of such principles into architecture and urban design projects.

Course Content


Urban Design Theory provides students with an introduction to theories, concepts, methods, and contemporary issues in urban design. Contemporary urban design is the process of collaboration between the architecture, planning, and landscape architecture professions. This collaboration is discussed by the important approaches and the selected examples.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction .
2) What is Urban Design?
3) Urban Evolution
4) Planning Movements
5) Urban Form, Urban Patterns, and Urban Morphology
6) Public Space
7) Sustainability
8) Pandemic and City
9) Midterm
10) Student Presentations and Discussion
11) Student Presentations and Discussion
12) Student Presentations and Discussion
13) Poster Critics of the Final Submission
14) Evaluation / Final Discussion

Sources

Course Notes / Textbooks: .
References: • Lynch, K. (1960), The Image of The City, The MIT Press, Massachusetts, USA.
• Alexander, C., Ishikawa, S., Silverstein, M., with Jacobson, M., Fiksdahl - King, I., Angel, S. (1977), A Pattern Language: Towns, Buildings, Construction.
• Lynch, K. (1981), Good City Form, The MIT Press, Massachusetts, USA.
• Broadbent, G. (1990) Emerging Concepts in Urban Space Design.
• Jacobs, J. (1993), The Death and Life of Great American Cities.
• Jacobs, A. B. (1996), Great Streets.
• Blakely, E. J., Snyder, M. G. (1997), Fortress America: Gated Communities in the United States.
• Lang, J. (2005), Urban Design: A typology of Procedures and Products. Illustrated with over 50 Case Studies.
• Gehl, J., Cities for People, Island Press, 2010.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Presentation 1 % 25
Midterms 1 % 25
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 13 2 26
Study Hours Out of Class 12 6 72
Presentations / Seminar 2 2 4
Midterms 1 2 2
Final 1 2 2
Total Workload 106

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.