POV4218 Juxtaposition-Mixed ImagesBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
POV4218 Juxtaposition-Mixed Images Spring 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery:
Course Coordinator : Dr. Öğr. Üyesi TOLGA HEPDİNÇLER
Recommended Optional Program Components: None
Course Objectives:

Learning Outcomes

The students who have succeeded in this course;

Course Content

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Orientation and Course lecture on Aims and Goals Screening: Wim Wenders “Himmel uber Berlin” and discussion
2) Deconstructing Berlin as an artistic subject matter : Historical and Social chage and its effects on artistic production
3) German Dada and Expressionism in Berlin
4) Visit to Neu Naional Galerie: Discovering German Bauhaus and contemporary art.
5) German art from WWII to the fall of wall : Subject matters, genres and artistic juxtapositions
6) New German Artistic and Visual Experience after reunification Homework: Analyze and germen artist within his/her biographical/formal and iconographıc context. Homework: Analyze a german artist within his/her biographical/formal and iconographıc context.
7) Visit to Hamburger Bahnhof Museum: Exploring the limits of contemporary art and German conceptual artists
8) Proposals for the artistic projects. Evaluation and feedbacks on the proposed projects.
9) Early German Photography and contemporary photographic experiences since 1960s.

Sources

Course Notes / Textbooks:
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Homework Assignments 1 % 30
Midterms 1 % 20
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Application 3 12 36
Presentations / Seminar 1 10 10
Homework Assignments 1 9 9
Midterms 1 10 10
Final 1 12 12
Total Workload 119

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.