BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
POV3437 Storyboard Spring 2 2 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. NAZLI EDA NOYAN CELAYİR
Recommended Optional Program Components: POV 2525 Concept Dev. And Visualization POV 2344 Cinematography POV 3341 Visual Storytelling POV 4337 Picture Theory POV 4111Graduation Project I POV 4112 Graduation Project II
Course Objectives: This course deals with the storyboard which is the last stage before the shooting of an actual film ( reel film, animation or advertisement). The students will be familiar with the basic concepts and terminology of the storyboard and will have the opportunity to do applications.

Learning Outcomes

The students who have succeeded in this course;
I. To visualize concepts.
II. To be able to understand the language of the visual design and have the ability to do applications.
III. To prepare drafts based on the script ( frame, camera, acting, connecting the frames, duration of frames, sound etc.), and to communicate these aspects visually.
IV. To be able to use different media and technologies successfully with respect to the expectations and necessities of the industry.

Course Content

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes / Textbooks: Handouts would be given weekly.
Harold Whitaker and Hohn Halas, Timing for animation Focal Press
Marcie Begleiter, From Word To Image
Peter Ettedgui, Production Design And Art Directiob Screencraft Focal Press
Treasures of Disney Animation Art Abbeville Press Publishers
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
Total %

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.