LOG3632 Supply Chain and Global Logistics ManagementBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG3632 Supply Chain and Global Logistics Management Spring 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Course Lecturer(s): Dr. Öğr. Üyesi ÖZGÜ TURGUT
Prof. Dr. SELİM ZAİM
Recommended Optional Program Components: None
Course Objectives: The goal of supply chain management is to link the marketplace, the distribution network, the manufacturing process and the procurement activity in such a way that customers are serviced at higher levels and yet at a lower total cost. The role of logistics in using service levels to segment markets, exploring appropriate measures to assess logistics productivity and service performance. This course provides information on auditing logistic systems and describes how greater responsiveness in the supply chain can be achieved through lead time reduction.

Learning Outcomes

The students who have succeeded in this course;
I. Analyzes how logistics capabilities and supply chain excellence can help companies gain a competitive advantage. It will also look at the relationship between logistics and financial performance.
II. Explains which customer value can be created and delivered through the supply chain. The theme will be demand-driven and responsive supply chain strategies.
III. Analyzes the need to understand the 'costs-to-serve'. Issues such as customer profitability analysis and benchmarking will be discussed.
IV. Discusses the concept of the agile supply chain and the building blocks of the agile paradigm.
V. Analyzes time compression including the search for ways in which non-value adding time can be removed from the pipeline.
VI. Examines the ideas of supply chain risk and vulnerability and explores ways in which supply chain resilience can be improved.
VII. Examines the fundamental business transformations that are required to enable supply chain integration to become a reality.
VIII. Examines the characteristics of effective supply chains.

Course Content

1st Week: Logistics & Competitive Strategy
2nd Week: Logistics & Customer Value
3rd Week: Measuring Logistics Costs and Performance
4thWeek: Creating the Agile Supply Chain
5thWeek: Strategic Lead-Time Management
6thWeek: Strategic Lead-Time Management
7thWeek: Managing the Global Pipeline
8thWeek: Managing the Global Pipeline
9thWeek: Managing Networks and Relationships
10thWeek: Managing Networks and Relationships
11thWeek: Overcoming the Barriers to Supply Chain Integration
12thWeek: Overcoming the Barriers to Supply Chain Integration
13th Week: Presentation
14th Week: Presentation

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Logistics & Competitive Strategy
2) Logistics & Customer Value
3) Measuring Logistics Costs and Performance
4) Creating the Agile Supply Chain
5) Strategic Lead-Time Management
6) Strategic Lead-Time Management
7) Managing the Global Pipeline
8) Managing the Global Pipeline
9) Managing Networks and Relationships
10) Managing Networks and Relationships
11) Overcoming the Barriers to Supply Chain Integration
12) Overcoming the Barriers to Supply Chain Integration
13) Presentation
14) Presentation

Sources

Course Notes / Textbooks: Supply Chain Management: by S. Chopra and P. Meindl, 4th ed. 2010, Upper Saddle River, NJ: Prentice Hall.

Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies by Simchi Levi, Kaminsky, Simchi Levi, 3rd ed. 2008, McGraw-Hill.

Logistics and Supply Chain Management by Martin Christoper, 2004.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 15
Midterms 1 % 35
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 40
Quizzes 3 3
Midterms 8 50
Final 8 60
Total Workload 153

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.