MOLECULAR BIOLOGY AND GENETICS | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
BME1032 | Introduction to Biology | Fall | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. CANAN BAĞCI |
Recommended Optional Program Components: | None |
Course Objectives: | 1. Explain the steps in the scientific process and list the importance of biology in society and daily life. 2. Define the cell structure and function. 3. Describe the basic chemical structure of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), carbohydrates, lipids, and proteins. 4. Explain the role of DNA and RNA in transmitting information from genotype (DNA) to phenotype (protein) and deciphering the genetic code. 5. Defines the evolution and ecosystem. 6. Defines the formation of tissues and organ systems 7. Define the basic structure and function of each organ system 8. Define the basic biological processes of cancer 9. Define the basic concepts about genetics and inheritance |
The students who have succeeded in this course; Students who successfully complete this course are able to; 1. Explain the steps in the scientific process and list the importance of biology in society and daily life. 2. Define the cell structure and function. 3. Describe the basic chemical structure of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), carbohydrates, lipids, and proteins. 4. Explain the role of DNA and RNA in transmitting information from genotype (DNA) to phenotype (protein) and deciphering the genetic code. 5. Defines the evolution and ecosystem. 6. Defines the formation of tissues and organ systems 7. Define the basic structure and function of each organ system 8. Define the basic biological processes of cancer 9. Define the basic concepts about genetics and inheritance |
The course aims to focus on the understanding of biological concepts including different perspectives of scientific processes, cellular structure and functions, basic molecular and cellular pathways, relation of tissues and organ system, ecosystem, evolution, cancer and genetics. Teaching methods and techniques used in the course are lecture, reading, discussion and individual study. |
Week | Subject | Related Preparation |
1) | Introduction & Meeting | Lecture Notes |
2) | Human Biology, Science and Society | Lecture Notes |
3) | The Chemistry of Living Things | Lecture Notes |
4) | Overview, Structure and Function of Cells | Lecture Notes |
5) | DNA and Chromosomes | Lecture Notes |
6) | DNA Replication | Lecture Notes |
7) | Cell Reproduction and Differentiation | Lecture Notes |
8) | Cancer; Uncontrolled Cell Division and Differentiation | Lecture Notes |
9) | Genetics and Inheritance | Lecture Notes |
10) | Human Development | Lecture Notes |
11) | From Cells to Organ Systems | Lecture Notes |
12) | Stem Cells | Lecture Notes |
13) | DNA Technology and Genetic Engineering | Lecture Notes |
14) | Evolution, Ecosystems | Lecture Notes |
Course Notes / Textbooks: | Michael D. Johnson "Human Biology, Concepts and Current Issues" 8th edition, Pearson, 2017 |
References: |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 14 | % 0 |
Quizzes | 2 | % 30 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 3 | 42 |
Quizzes | 4 | 1 | 4 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 92 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. | 3 |
2) | Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. | 4 |
3) | Develop critical, creative and analytical thinking skills. | 5 |
4) | Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. | 3 |
5) | Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. | 4 |
6) | Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. | 4 |
7) | Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. | 3 |
8) | Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. | 5 |
9) | Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. | 4 |
10) | Search and use literature to improve himself/herself and follow recent developments in science and technology. | 5 |
11) | Be aware of the national and international problems in the field and search for solutions. | 4 |