ENM5302 Supply Chain and Logistics ManagementBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ENM5302 Supply Chain and Logistics Management Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. BARIŞ SELÇUK
Recommended Optional Program Components: N.A.
Course Objectives: This course is intended to provide students with in depth knowledge of principles and theory of supply chain management. The goal of this course is to cover not only high-level supply chain strategy and concepts, but also to give students a solid understanding of the analytical tools necessary to solve supply chain problems. This course helps students develop an understanding of the strategic role of a supply chain, the key strategic drivers of supply chain performance, analytic methodologies for supply chain analysis and their interrelationships.

Learning Outcomes

The students who have succeeded in this course;
After completing this course, students should be able to:
• Understand how good supply chain management can be a competitive advantage
• Identify the key drivers of supply chain performance
• Apply analytical methods to practical supply chain problems

Course Content

Strategic modeling of supply chains, supply chain design, tactical planning of supply chains, planning and control of supply chain operations, inventory planning, production and distribution planning in supply chains, bull-whip effect.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Supply Chain Management
2) Supply Chain Strategy, Supply Chain Drivers
3) Supply Chain Network Design – Framework
4) Supply Chain Network Design - Uncertainty
5) Demand and Supply Management - Forecasting
6) Demand and Supply Management – Aggregate Planning
7) MIDTERM
8) Demand and Supply Management – Inventory Planning
9) Demand and Supply Management – Inventory Planning
10) Transportation in a Supply Chain
11) Student Term Project Presentations
12) Student Term Project Presentations
13) Student Term Project Presentations
14) Review
15) FINAL

Sources

Course Notes / Textbooks: Chopra, S. and Meindl P., Supply Chain Management: Strategy, Planning and Operations, 3rd Edition, Pearson, 2007.
References: Sanders N.R., Supply Chain Management: A Global Perspective, 1st Edition, Wiley, 2012.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 13 3 39
Presentations / Seminar 1 20 20
Project 1 40 40
Midterms 1 41 41
Final 1 50 50
Total Workload 190

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.