EDT5001 Educational Technology Field, Theory and ProfessionBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EDT5001 Educational Technology Field, Theory and Profession Fall 3 0 3 8
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Course Lecturer(s): Dr. Öğr. Üyesi YAVUZ SAMUR
Dr. Öğr. Üyesi ENİSA MEDE
Recommended Optional Program Components: None
Course Objectives: The course provides you with the foundational and working knowledge necessary to initiate steps toward becoming a professional in the field of educational technology. You will explore different aspects of the field, including the assets, opportunities and career paths in educational technology.

Learning Outcomes

The students who have succeeded in this course;
When successfully complete the course, students will be able to:
• describe the history and foundations of the field
• relate learning technologies to learning theories
• define educational technology and distinguish among its components and related fields (e.g., information technology, instructional design, knowledge representation, human performance technologies)
• initiate steps toward becoming a professional in the field of educational technology
• Discuss learner and learning environment characteristics and relate those with potential application of educational technologies
• Design a (for an information technology based lesson) storyboard for a given a set of learning problems, and discuss the components of the interface in relation to major learning theories.
• Construct arguments over technology use in solving a learning problem

Course Content

The evolution of technology; the concept of education; technology and education-society-economy relations; the relationship between education and informatics; educational technology as a discipline; theories, concepts and principles in educational technology; the historical development of educational technology and its future; learning theories applied to any learning issue and problem

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Schooling and technology
2) Education as system and place of educational technology as a component
3) Major learning theories and relations with educational technology
4) Technology applications in learning environments (i.e., conventional and emerging tools and mediums)
5) Technology applications in learning environments (i.e., tutorials, simulations, microworlds, ITSs)
6) Learning problems and learning environments
7) Learning environments and interaction design
8) Components of Instructional design
9) Instructional design models
10) Educational technology research examples_1
11) Educational technology research examples_2
12) Educational technology research examples_3
13) Creating technology based learning environments
14) Assesment and evaluation in technology based learning environments

Sources

Course Notes / Textbooks: -
References: -

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 2 % 50
Midterms 1 % 20
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 20
PERCENTAGE OF FINAL WORK % 80
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.