BME2054 BiomechanicsBahçeşehir UniversityDegree Programs ELECTRICAL AND ELECTRONICS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ELECTRICAL AND ELECTRONICS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME2054 Biomechanics Fall 3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The aim of this course is;
Introduction to the application of mechanical engineering principles to biological materials and systems such as ligaments, tendons, bones, muscles and joints, to demonstrate quantitative and qualitative definitions of the effect of skeletal muscles in relation to human movement, Introduction to engineering analysis of solid bodies, hard and soft tissues, beams, bones in equilibrium

Learning Outcomes

The students who have succeeded in this course;
1. Knows the basic laws of mechanics
2. Learns the concepts of stress and strain in the context of biological tissues.
3. Knows the static and dynamic fundamentals of biomechanics
4. Understands the mechanical properties of bone and muscle tissues.
5. Apply engineering approaches and mechanical principles to solve real problems of the human body.
6. Understands the application of fluid dynamics principles to the blood circulation.

Course Content

Introduction to biomechanics, static, kinematics, kinetics, impulse and momentum, linear and angular motion, body mechanics, stress and strain, soft tissue and mechanical properties of bone.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomechanics and History of Biomechanics None
2) Linear and Angular Kinematics None
3) Linear Motions, Work, Energy and Power None
4) Fundamentals of Mechanics and Qualitative Analysis None
5) Anatomical Definitions and Muscle Structures None
6) Muscle Movements and Skeletal-Muscular System None
7) Bone Physiology and Bone Fractures None
8) Midterm 1 None
9) Structure and Mechanical Properties of Joints None
10) Mechanics of the Cardiovascular System None
11) Fluid Mechanics None
12) Midterm 2 None
13) Human Motion Analysis None
14) Human Motion Analysis None

Sources

Course Notes / Textbooks: Lecture Notes and Assignments
References: Duane Knudson, "Fundamentals of Biomechanics", 2nd Edition

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 20
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Application 14 2 28
Presentations / Seminar 1 4 4
Project 1 4 4
Homework Assignments 1 4 4
Midterms 1 2 2
Final 1 2 2
Total Workload 72

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and electric-electronic engineering subjects; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues, according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for electrical-electronic engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.