BME1071 Introduction to Biomedical EngineeringBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME1071 Introduction to Biomedical Engineering Spring 2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The objectives of this course are;
- To introduce students to the field of Biomedical Engineering (BME) with the excitement of this rapidly growing field
- To communicate students to the academic preparation needed for successful study and professional careers in the different sub-disciplines of BME
- To guide and advise students for their future plans and studies
- Providing students with information and support for other engineering or life sciences programs or different sub-disciplines of BME

Learning Outcomes

The students who have succeeded in this course;
Students who succeeded this course will;

- Have basic knowledge about the applications of engineering principles in biomedical engineering
- Know the definition of biomedical engineering and learn the areas of interest of biomedical engineers
- Know the applications of basic sciences in physics, chemistry, biology and mathematics in the field of biomedical engineering
- Know the definition and working fields of the clinical engineer
- Know to make research for providing solutions and methods to solve basic problems and interpret the results.

Course Content

- Fundamentals of biomedical engineering,
- To understand the relationship between biomedical engineering and clinical engineering,
- Fundamentals of physics, biology, physiology, mechanics and electricity and electronics,
- Fundamentals of biomedical instrumentation,
- Biosensors and their working principles,
- Optics and Photonics in medical applications,
- Medical imaging modalities.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomedical Engineering
2) Biomedical Equipment Technology
3) Fundamentals of Physics in Biomedical Engineering
4) Fundamentals of Mechanics in Biomedical Engineering
5) Fundamentals of Biology in Biomedical Engineering
6) Fundamentals of Human Physiology
7) Electrical Fundamentals of Biomedical Engineering
8) Midterm Exam
9) Biological Signals
10) Bioinstrumentation
11) Biosensors
12) Biomedical Optics
13) Principles of Medical Imaging
14) Clinical Engineering

Sources

Course Notes / Textbooks: Power Point slides will be available for student review.
References: 1. G.S. Sawhney, “Fundamentals Of Biomedical Engineering” ISBN (13) : 978-81-224-2549-9, (2007).
2. Joseph D. Bronzino, “The Biomedical Engineering Handbook Third Edition Medical Devices and Systems” (2006).
3. John G. Webster, "Medical Instrumentation, Application and Design" Fourth Edition, (2009)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Midterms 1 % 30
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Midterms 1 2 2
Final 1 2 2
Total Workload 144

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.