BME1071 Introduction to Biomedical EngineeringBahçeşehir UniversityDegree Programs PSYCHOLOGYGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
PSYCHOLOGY
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME1071 Introduction to Biomedical Engineering Spring 2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi HAKAN SOLMAZ
Course Lecturer(s): Dr. Öğr. Üyesi HAKAN SOLMAZ
Recommended Optional Program Components: None
Course Objectives: The objectives of this course are;
- To introduce students to the field of Biomedical Engineering (BME) with the excitement of this rapidly growing field
- To communicate students to the academic preparation needed for successful study and professional careers in the different sub-disciplines of BME
- To guide and advise students for their future plans and studies
- Providing students with information and support for other engineering or life sciences programs or different sub-disciplines of BME

Learning Outcomes

The students who have succeeded in this course;
Students who succeeded this course will;

- Have basic knowledge about the applications of engineering principles in biomedical engineering
- Know the definition of biomedical engineering and learn the areas of interest of biomedical engineers
- Know the applications of basic sciences in physics, chemistry, biology and mathematics in the field of biomedical engineering
- Know the definition and working fields of the clinical engineer
- Know to make research for providing solutions and methods to solve basic problems and interpret the results.

Course Content

- Fundamentals of biomedical engineering,
- To understand the relationship between biomedical engineering and clinical engineering,
- Fundamentals of physics, biology, physiology, mechanics and electricity and electronics,
- Fundamentals of biomedical instrumentation,
- Biosensors and their working principles,
- Optics and Photonics in medical applications,
- Medical imaging modalities.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Biomedical Engineering
2) Biomedical Equipment Technology
3) Fundamentals of Physics in Biomedical Engineering
4) Fundamentals of Mechanics in Biomedical Engineering
5) Fundamentals of Biology in Biomedical Engineering
6) Fundamentals of Human Physiology
7) Electrical Fundamentals of Biomedical Engineering
8) Midterm Exam
9) Biological Signals
10) Bioinstrumentation
11) Biosensors
12) Biomedical Optics
13) Principles of Medical Imaging
14) Clinical Engineering

Sources

Course Notes / Textbooks: Power Point slides will be available for student review.
References: 1. G.S. Sawhney, “Fundamentals Of Biomedical Engineering” ISBN (13) : 978-81-224-2549-9, (2007).
2. Joseph D. Bronzino, “The Biomedical Engineering Handbook Third Edition Medical Devices and Systems” (2006).
3. John G. Webster, "Medical Instrumentation, Application and Design" Fourth Edition, (2009)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Midterms 1 % 30
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Midterms 1 2 2
Final 1 2 2
Total Workload 144

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To develop an interest in the human mind and behavior, to be able to evaluate theories using empirical findings, to understand that psychology is an evidence-based science by acquiring critical thinking skills.
2) To gain a biopsychosocial perspective on human behavior. To understand the biological, psychological, and social variables of behavior.
3) To learn the basic concepts in psychology and the theoretical and practical approaches used to study them (e.g. basic observation and interview techniques).
4) To acquire the methods and skills to access and write information using English as the dominant language in the psychological literature, to recognize and apply scientific research and data evaluation techniques (e.g. correlational, experimental, cross-sectional and longitudinal studies, case studies).
5) To be against discrimination and prejudice; to have ethical concerns while working in research and practice areas.
6) To recognize the main subfields of psychology (experimental, developmental, clinical, cognitive, social and industrial/organizational psychology) and their related fields of study and specialization.
7) To acquire the skills necessary for analyzing, interpreting and presenting the findings as well as problem posing, hypothesizing and data collection, which are the basic elements of scientific studies.
8) To gain the basic knowledge and skills necessary for psychological assessment and evaluation.
9) To acquire basic knowledge of other disciplines (medicine, genetics, biology, economics, sociology, political science, communication, philosophy, anthropology, literature, law, art, etc.) that will contribute to psychology and to use this knowledge in the understanding and interpretation of psychological processes.
10) To develop sensitivity towards social problems; to take responsibility in activities that benefit the field of psychology and society.
11) To have problem solving skills and to be able to develop the necessary analytical approaches for this.
12) To be able to criticize any subject in business and academic life and to be able to express their thoughts.